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ABSTRACT. Early 1 7th-century mathematical publications of Johann Faulhaber 
contain some remarkable theorems, such as the fact that the r-fold summation 
of lm, 2m, ... , nm is a polynomial in n(n + r) when m is a positive odd 
number. The present paper explores a computation-based approach by which 
Faulhaber may well have discovered such results, and solves a 360-year-old 
riddle that Faulhaber presented to his readers. It also shows that similar results 
hold when we express the sums in terms of central factorial powers instead 
of ordinary powers. Faulhaber's coefficients can moreover be generalized to 
noninteger exponents, obtaining asymptotic series for 1 + 2' + + na in 
powers of n-1(n + 1)-1 . 

1. INTRODUCTION 

Johann Faulhaber of Ulm (1580-1635), founder of a school for engineers 
early in the 17th century, loved numbers. His passion for arithmetic and alge- 
bra led him to devote a considerable portion of his life to the computation of 
formulas for the sums of powers, significantly extending all previously known 
results. Indeed, he may well have carried out more computing than anybody 
else in Europe during the first half of the 17th century. His greatest mathe- 
matical achievements appear in a booklet entitled Academia Algebrac (written 
in German in spite of its Latin title), published in Augsburg, 1631 [2]. Here 
we find, for example, the following formulas for sums of odd powers: 

1 +21 + + n' =N, N= (n2+n)/2; 

13+ 23 + +n 3 N 2 

15 + 25 + ...+ n5 =(4N3 - N2)/3; 
7 +2 7 + . +n n7= (12N4 - 8N3+ 2N2)/6; 

19+29+...+n9-(16N5-20N4+ 12N3-3N2)/5 

1II + 211 + + nl= (32N6 - 64N5+ 68N4 - 4ON3 + ON 2)/6; 

113 + 213+ + n13 - (960N7 - 2800N6+ 4592N5 - 4720N4 

+ 2764N3 - 691N2)/105; 

I15 + 215+ + n'5 =(192N8- 768N7 + 1792N6 - 2816N5 

+ 2872N4 - 1680N3 + 420N2)/12; 
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I17 + 217+ + n17 = (1280N9 - 6720N8+ 21120N7- 46880N6 

+ 72912N5 - 74220N4 + 43404N3 - 10851N2)/45. 

Other mathematicians had studied In', En2, .. . , Xn7, and he had previously 
gotten as far as Xnl2; but the sums had always previously been expressed as 
polynomials in n, not N. 

Faulhaber begins his book by simply stating these novel formulas and pro- 
ceeding to expand them into the corresponding polynomials in n. Then he 
verifies the results when n = 4, N = 10. But he gives no clues about how he 
derived the expressions; he states only that the leading coefficient in En2m-1 will 
be 2m-1/m, and that the trailing coefficients will have the form 4amN3 -_amN2 
when m > 3. 

Faulhaber believed that similar polynomials in N, with alternating signs, 
would continue to exist for all m, but he may not really have known how 
to prove such a theorem. In his day, mathematics was treated like all other 
sciences; an observed phenomenon was considered to be true if it was supported 
by a large body of evidence. A rigorous proof of Faulhaber's assertion was first 
published by Jacobi in 1834 [6]. A. W. F. Edwards showed recently how to 
obtain the coefficients by matrix inversion [1], based on another proof given by 
L. Tits in 1923 [8]. But none of these proofs use methods that are very close to 
those known in 1631. 

Faulhaber went on to consider sums of sums. Let us write Yrnm for the 
r-fold summation of mth powers from 1 to n; thus, 

XOnm = nm; Xzr+l nm = Erlm + EXr2m +?. + Ernm. 

He discovered that Ern2m can be written as a polynomial in the quantity 

Nr = (n2 + rn)/2, 

times Ern2. For example, he gave the formulas 

Z2 n= (4N2 - 1) Z2n215; 

Z3n4 = (4N3- 1)Z3n2/7; 

Y24n4 = (6N4 - 1) X4n2/14; 

Y26n4 = (4N6 + 1) Y26n2/15 

Z2 n= (6N22 5N2 + 1) Z2n2/7 

Z3n6 = (1ON32 - iON3 + 1) Z3n2/21 

Y4n6 = (4N42 4N4 - 1) X4n2/14; 

Z n 8= (16N23 - 28N22 + 18N2 - 3) Z2n2/15. 

He also gave similar formulas for odd exponents, factoring out Yrnl instead 
of Xrn2: 

2 n5 = (8N22 2N2 - 1)Z2nl/ 14; 

2n7 = (40N23 - 40N22+6N2+6)Z2n1/60. 

And he claimed that, in general, Ernm can be expressed as a polynomial in Nr 
times either Xrn2 or Ernl , depending on whether m is even or odd. 

Faulhaber had probably verified this remarkable theorem in many cases in- 
cluding E I n6, because he exhibited a polynomial in n for El' n6 that would 
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have been quite difficult to obtain by repeated summation. His polynomial, 
which has the form 

6n'7 + 561n'6+***+ 1021675563656n5 +* - 96598656000n 
2964061900800 

turns out to be absolutely correct, according to calculations with a modern com- 
puter. (The denominator is 17!/120. One cannot help thinking that nobody 
has ever checked these numbers since Faulhaber himself wrote them down, until 
today.) 

Did he, however, know how to prove his claim, in the sense that 20th century 
mathematicians would regard his argument as conclusive? He may in fact have 
known how to do so, because there is an extremely simple way to verify the 
result using only methods that he would have found natural. 

2. REFLECTIVE FUNCTIONS 

Let us begin by studying an elementary property of functions defined on the 
integers. We will say that the function f(x) is r-reflective if 

f(x) = f(y) whenever x + y + r = 0; 

and it is anti-r-reflective if 

f(x) = -f(y) whenever x + y + r = 0. 

The values of x, y, r will be assumed to be integers for simplicity. When 
r = 0, reflective functions are even, and anti-reflective functions are odd. No- 
tice that r-reflective functions are closed under addition and multiplication; 
moreover, the product of two anti- r-reflective functions is r-reflective. 

Given a function f, we define its backward difference Vf in the usual way: 

Vf(x) = f(x) - f(x - 1). 
It is now easy to verify a simple basic fact. 

Lemma 1. If f is r-reflective, then Vf is anti-(r - 1)-reflective. If f is anti-r- 
reflective, then Vf is (r - 1)-reflective. 
Proof. If x+y+(r-1)=0,then x+(y-1)+r=0 and (x-1)+y+r=O. 
Thus f(x) = +f(y - 1) and f(x - 1) = +f(y) when f is r-reflective or 
anti-r-reflective. [] 

Faulhaber almost certainly knew this lemma, because [2, folio D.iii recto] 
presents a table of n8, Vn8, ... , V8n8 in which the reflection phenomenon is 
clearly apparent. He states that he has constructed "grosse Tafeln," but that this 
example should be "alles gnugsam vor Augen sehen und auf hohere quantiteten 
[exponents] continuiren konde." 

The converse of Lemma 1 is also true, if we are careful. Let us define X as 
an inverse to the V operator: 

Yf(n) \T C+f(l)+ +f(n), if n>0; 
C - f(O) - - -f(n + 1) , if n < 0. 

Here C is an unspecified constant, which we will choose later; whatever its 
value, we have 

VJf(n) = Xf(n) - Xf(n - 1) = f(n) 

for all n . 
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Lemma 2. If f is r-reflective, there is a unique C such that If is anti-(r + 1)- 
reflective. If f is anti-r-reflective, then Ef is (r + 1)-reflective for all C. 

Proof. If r is odd, Ef can be anti-(r + 1)-reflective only if C is chosen so 
that we have If(-(r + 1)/2) = 0. If r is even, Ef can be anti-(r + 1)- 

reflective only if If (-r/2) = -Ef (-r/2 - 1) = -(Ef (-r/2) - f (-r/2)); i.e., 
Xf(-r/2) = 1 

f (-r/2). 
Once we have found x and y such that x +y + r + 1 = 0 and Xf(x) = 

-Xf(y), it is easy to see that we will also have Xf(x - 1) = -Xf(y + 1), if f 
is r-reflective, since Ef(x) - Xf(x - 1) = f(x) = f(y + 1) = Xf(y + 1) - Xf(y) . 

Suppose, on the other hand, that f is anti-r-reflective. If r is odd, clearly 
Xf(x) = Xf(y) if x = y = -(r+ 1)/2. If r is even, then f(-r/2) = 0; so 

Xf(x) = Xf(y) when x = -r/2 and y = -r/2 - 1. Once we have found x 
and y suchthat x+y+ r + 1 =0 and If(x) =If(y), itiseasytoverifyas 
above that If(x - 1) = Xf(y + 1) . 1 

Lemma 3. If f is any even function with f(O) = 0, the r-fold repeated sum 
Xrf is r-reflective for all even r and anti-r-reflective for all odd r, if we choose 
the constant C = 0 in each summation. If f is any odd function, the r-fold 
repeated sum Xrf is r-reflective for all odd r and anti-r-reflective for all even r, 
if we choose the constant C = 0 in each summation. 

Proof. Note that f(O) = 0 if f is odd. If f(O) = 0 and if we always choose 
C = 0, it is easy to verify by induction on r that Xrf(x) = 0 for -r < x < 0 . 

Therefore the choice C = 0 always agrees with the unique choice stipulated 
in the proof of Lemma 2, whenever a specific value of C is necessary in that 
lemma. [] 

When m is a positive integer, the function f (x) = Xm obviously satisfies the 
condition of Lemma 3. Therefore we have proved that each function Ernm is 
either r-reflective or anti-r-reflective, for all r > 0 and m > 0. And Faulhaber 
presumably knew this too. His theorem can now be proved if we supply one 
small additional fact, specializing from arbitrary functions to polynomials: 

Lemma 4. A polynomial f(x) is r-reflective if and only if it can be written as a 
polynomial in x(x + r); it is anti-r-reflective if and only if it can be written as 
(x + r/2) times a polynomial in x(x + r). 

Proof. The second statement follows from the first, because we have already 
observed that an anti-r-reflective function must have f (-r/2) = 0 and because 
the function x+r/2 is obviously anti-r-reflective. Furthermore, any polynomial 
in x(x + r) is r-reflective, because x(x + r) = y(y + r) when x + y + r = 0 . 
Conversely, if f(x) is r-reflective, we have f(x - r/2) = f(-x - r/2), so 
g(x) = f(x - r/2) is an even function of x; hence g(x) = h(x2) for some 
polynomial h . Then f(x) = g(x + r/2) = h (x(x + r) + r2/4) is a polynomial 
inx(x+r). [ 

Theorem (Faulhaber). There exist polynomials gr,m for all positive integers r 
and m such that 

Ern = gr,2m+1 (n(n + r)) nE , 
r 

n = gr,2m(n(n + r))r n 

Proof. Lemma 3 tells us that Ernm is r-reflective if m + r is even and anti-r- 
reflective if m + r is odd. 
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Note that E;n 1 = (,+r) Therefore a polynomial in n is a multiple of Xrnl 
if and only if it vanishes at -r, ..., -1, 0. We have shown in the proof of 
Lemma 3 that ?rnm has this property for all m; therefore Xrnm/lrnl is an 
r-reflective polynomial when m is odd, an anti-r-reflective polynomial when 
m is even. In the former case, we are done, by Lemma 4. In the latter case, 
Lemma 4 establishes the existence of a polynomial g such that Xrnm/lrnl = 
(n + r/2)g(n(n + r)). Again, we are done, because the identity 

Xrn2 - 2n + r Xr 
r + 2 

is readily verified. 1 

3. A PLAUSIBLE DERIVATION 

Faulhaber probably did not think about r-reflective and anti-r-reflective func- 
tions in exactly the way we have described them, but his book [2] certainly indi- 
cates that he was quite familiar with the territory encompassed by that theory. 

In fact, he could have found his formulas for power sums without knowing 
the theory in detail. A simple approach, illustrated here for In 13, would suffice: 
Suppose 

14Xn'3 = n7(n + 1)7 - S(n), 
where S(n) is a 1-reflective function to be determined. Then 

14n13 = n7(n + 1)7 - (n - 1)7n7 - VS(n) 
= 14n13 + 70n" + 42n9 + 2n7 - VS(n), 

and we have 
S(n) = 70n'1 + 42n9 + 21n7. 

In other words, 

nl3 = N - 5- n - 3Xn9 - In 
7 7 

and we can complete the calculation by subtracting multiples of previously com- 
puted results. 

The great advantage of using polynomials in N rather than n is that the 
new formulas are considerably shorter. The method Faulhaber and others had 
used before making this discovery was most likely equivalent to the laborious 
calculation 

Xn13 =1I n14 + L3Xn12 -26Xn11 + ?143n I - 143Xn9? +429In8 + 171l6En7 

+4 2 2 2 214 + ~2 9n6 - 1431n5 + 12 In - 261n3 + 2 In2 _-n' + F4 n; 

the coefficients here are 14, fl(4), ... , _ 14 
14 12' 14 V1 1X 14 V0J 

To handle sums of even exponents, Faulhaber knew that 

En2m = + 2_ (aIN+ a2N2 + + amNm) 

holds if and only if 

Inf2m+l _ al N2+ a2N3+.._+ am A m+ . 
2 3 m+lI 
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Therefore, he could get two sums for the price of one [2, folios C.iv verso and 
D.i recto]. It is not difficult to prove this relation by establishing an isomor- 
phism between the calculations of Xn2m+l and the calculations of the quantities 
S2m = ((2m + l)Xn2m)/ (n + 1 for example, the recurrence for in13 above 
corresponds to the formula 

6~~~~~~~~ S12 = 64N6 - 5S10 - 3S8 - -S6 7 

which can be derived in essentially the same way. Since the recurrences are 
essentially identical, we obtain a correct formula for In2m+l from the formula 
for S2m if we replace Nk everywhere by Nk+l/(k + 1). 

4. FAULHABER' S CRYPTOMATH 

Mathematicians of Faulhaber's day tended to conceal their methods and hide 
results in secret code. Faulhaber ends his book [2] with a curious exercise of this 
kind, evidently intended to prove to posterity that he had in fact computed the 
formulas for sums of powers as far as In25 although he published the results 
only up to In'7. 

His puzzle can be translated into modern notation as follows. Let 

al7nl7 + + a2n2 + aln 
d 

where the a 's are integers having no common factor and d = a1 7 + + a2 +a -. 
Let 

-25 A26n26 + + A2n2 + Amn 
D 

be the analogous formula for Xn25 . Let 

22 (bloNl? - b9N9 + ... + bo) 2 En ~ blo - bs + + bo 
E 

= (cionl' - c9N9 + +co) 
cIo-C9 + '.+ Co 

24 (diIn" - dloNlO + . .. - do) 2 In 
~di I - dio +- -do 

E 

zn5=(elinil - eloNl? + * ._eo) 

el1 - e1o + -eo 

where the integers bk, Ck dk, ek are as small as possible so that bk, Ck, dk, ek 

are multiples of 2k . (He wants them to be multiples of 2k so that bk Nk, Ck Nk 

dkNk, ek Nk are polynomials in n with integer coefficients; that is why he 
wrote, for example, In7 = (12N2-8N+2)N2/6 instead of (6N2-4N+ 1)N2/3. 

See [2, folio D.i verso].) Then compute 

xi = (C3 - al2)/7924252 
x2 = (b5 + alo)/l1 12499648 

X3 = (a, I - bg - cl)/2945002; 

X4 = (al4 + C7)/120964; 

x5 = (A26alI - D + a13 + dl, + el)/199444. 
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These values (X1, X2, X3, X4, x5) specify the five letters of a what he called a 
"hochgeriihmte Nam," if we use five designated alphabets [2, folio F.i recto]. 

It is doubtful whether anybody solved this puzzle during the first 360 years 
after its publication, but the task is relatively easy with modern computers. We 
have 

a10 = 532797408, a1 = 104421616, a12 = 14869764, 

a13= 1526532, a14= 110160; 

b5= 29700832, bg = 140800; 

cl= 205083120, C3 = 344752128, C7 = 9236480; 

dl1 = 559104; el1 = 86016; A26 =42; D= 1092. 

The fact that x2 = (29700832 + 532797408)/112499648 = 5 is an integer is 
reassuring: We must be on the right track! But alas, the other values are not 
integral. 

A bit of experimentation soon reveals that we do obtain good results if we 
divide all the Ck by 4. Then, for example, 

xI = (344752128/4 - 14869764)/7924252 = 9, 

and we also find X3 = 18, X4 = 20. It appears that Faulhaber calculated 
X9n8 and Xn22 correctly, and that he also had a correct expression for En23 
as a polynomial in N; but he probably never went on to express En23 as a 
polynomial in n, because he would then have multiplied his coefficients by 4 
in order to compute c6N6 with integer coefficients. 

The values of (XI, X2, X3, X4) correspond to the letters I E S U, so the 
concealed name in Faulhaber's riddle is undoubtedly I E S U S (Jesus). 

But his formula for X5 does not check out at all; it is way out of range and 
not an integer. This is the only formula that relates to En24 and En25, and it 
involves only the simplest elements of those sums-the leading coefficients A26, 
D, d11, elI. Therefore, we have no evidence that Faulhaber's calculations 
beyond En23 were reliable. It is tempting to imagine that he meant to say 
'A26all /D ' instead of 'A26al 1 - D' in his formula for X5, but even then major 
corrections are needed to the other terms and it is unclear what he intended. 

5. ALL-INTEGER FORMULAS 

Faulhaber's theorem allows us to express the power sum Enm in terms of 
about 1m coefficients. The elementary theory above also suggests another ap- 
proach that produces a similar effect: We can write, for example, 

n = (); 

n3 =6(n+l) + (n); 

5= 120(n2 ) + 30(n+1) + (n). 

(It is easy to see that any odd function g(n) of the integer n can be expressed 
uniquely as a linear combination 

g(n).= a, (n) + a3(n+1) + a5(n+2) + 

of the odd functions (nl) (n+1) , (n+2), ... , because we can determine the 
coefficients a, , a3, a5, ... successively by plugging in the values n = l, 2, 
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3, .... The coefficients ak will be integers if and only if g(n) is an integer for 
all n.) Once g(n) has been expressed in this way, we clearly have 

Xg(n) = a, (n+1) + a3 (n+2) + a5 (n+3) + 
This approach, therefore, yields the following identities for sums of odd 

powers: 

= (n+ ) 

In 3 =6(n + )+ 
2 

( j) +(j) 

In 5 = 120 
n + 3) + 30 n + 2) + (n + l 

n 7= 5040( n8 + 4 1680(n63) + 126 (n + 2) + (n +) 

In9=362880 1+5 +151200( 8 )+17640( 63) 

+ 5i0(n j) + (n; 1)I 
(4 ) (2) 

Xn11=39916800( n16) + 19958400( 1n+5) +3160080( n 
4) 

+ 168960(n+3) +2046(n+2) + (n+ ) 

In13 = 6227020800 ( 1 +3632428800 
n + 726485760( + ) 14 +2 + 

+ 57657600(n 8 4 + 1561560n + 3) + 8190 n + 2 + n + I 

And repeated sums are equally easy; we have 

n=(n r), Xrn3=6(n+ 1 +r)+(fI r) etc. 

The coefficients in these formulas are related to what Riordan [7, p. 213] has 
called central factorial numbers of the second kind. In his notation 

m 
m T(m k)x [k] X[kj = x (x + k2-1 (x + k2 2) ..(X k2 

k=l 

when m > 0, and T(m, k) = 0 when m - k is odd; hence 
m n{ 

n2m1 Z E(2k - l)! T(2m, 2k) n2k -l)' 
mm 

Xn2m-l = Z (2k - 1)! T(2m, 2k) 

The coefficients T(2m, 2k) are always integers, because the basic identity 
x[k?2] - x[k-(x2 - k2/4) implies the recurrence 

T(2m + 2, 2k) = k2T(2m, 2k) + T(2m, 2k -2). 
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The generating function for these numbers turns out to be 
0o m 2m 

cosh (2x sinh(y/2)) = Z (t T(2m, 2k)x2k) Y 
m=O k=O 

( 

Notice that the power-sum formulas obtained in this way are more "efficient" 
than the well-known formulas based on Stirling numbers (see [5, (6.12)]): 

kn{ k{}(kl+1) = E k!{ kk} l)mk I(n ) 

The latter formulas give, for example, 

?n7 = 5O4O(n8') + 15120(n+l) + 16800(n+l) + 8400(n+l) + 1806 (n l) 

+ 126 (n+1) + (n+l) 

= 5040( 8)n - 15120(n76) + l6800(n+5) - 8400(n+4) + l806(n+3) 

- l26(n7+2) + (n+l) 

There are about twice as many terms, and the coefficients are larger. (The 
Faulhaberian expression ?n7 = (6N4 - 4N3 + N2)/3 is, of course, better yet.) 

Similar formulas for even powers can be obtained as follows. We have 

n = n(n) =UI(n), 

n4 =6n(+ ) + n(n) = 12U2(n) + U1 (n), 

6= l2On(+2) + 30n((n+l) + n(n) = 360U3(n) + 60U2(n) + Ui(n), 

etc., where 

k (2k- i 2k ) ( 2k ) 
Hence 

In 2= T, (n) , 

In = 12T2(n) + T1 (n), 

In-6= 360T3(n) + 60T2 + Ti (n), 

In8 = 20160T4(n) + 5040T3(n) + 252T2(n) + Ti (n), 

Inl? = 1814400T5(n) + 604800T4(n) + 52920T3(n) + 1020T2(n) + T1(n), 

In12 = 239500800T6(n) + 99792000T5(n) + 12640320T4(n) 
+ 506880T3(n) + 4092T2(n) + Ti (n), 

etc., where 

n + + I n+k _2n+l (n+k'\ 
Tk(n) (2k+ I )+ (2k+ 1 2k+ I 2k 

Curiously, we have found a relation here between In2m and En2m- 1, some- 
what analogous to Faulhaber's relation between In2m and Xn2m+l: The for- 
mula 

?n2m (n + l' (n + 2 ( n + m 
2n +1 =a 2 J+ a2 14 J Jr 

+ am 2m 
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holds if and only if 

In2m-1 3 (n-),+ a2(n+2)+ 2m+ (amn m) 

6. REFLECTIVE DECOMPOSITION 

The forms of the expressions in the previous section lead naturally to useful 
representations of arbitrary functions f(n) defined on the integers. It is easy 
to see that any f(n) can be written uniquely in the form 

f(n) = Eak (n + Lk/2) 
k>O 

for some coefficients ak; indeed, we have 

ak = vkf(Lk/2j). 

(Thus aO = f(O), a, = f(O) - f(-1), a2 = f(l) - 2f(O) + f(-1), etc.) The 
ak are integers if and only if f(n) is always an integer. The ak are eventually 
zero if and only if f is a polynomial. The a2k are all zero if and only if f is 
odd. The a2k+1 are all zero if and only if f is 1-reflective. 

Similarly, there is a unique expansion 

f(n) = boTo(n) + biUi(n) + b2Ti(n) + b3U2(n) + b4T2(n) +? 

in which the bk are integers if and only if f(n) is always an integer. The b2k 
are all zero if and only if f is even and f(O) = 0. The b2k+l are all zero if 
and only if f is anti-l-reflective. Using the recurrence relations 

VTk(n) = Uk(n) , VUk(n) = Tk-1(n - 1) 

we find 
ak = vkf(Lk/2j) = 2bk-1 + (-1)kbk 

and therefore 
k 

bk = E(-1 ) F]/21 + Lk/2J2k-a. 
j=0 

In particular, when f(n) = 1 for all n, we have bk = (-1) Lk/21 2k . The infinite 
series is finite for each n . 

Theorem. If f is any function defined on the integers and if r, s are arbitrary 
integers, we can always express f in the form 

f(n) = g(n) + h(n) 

where g(n) is r-reflective and h(n) is anti-s-reflective. This representation is 
unique, except when r is even and s is odd; in the latter case the representation 
is unique if we specify the value of g or h at any point. 
Proof. It suffices to consider 0 < r, s < 1, because f(x) is (anti)-r-reflective 
if and only if f (x + a) is (anti)-(r + 2a)-reflective. 

When r = s = 0, the result is just the well-known decomposition of a func- 
tion into even and odd parts, 

g(n) = 1 f f(n) + f (-n)). h(n)=-(f(n) - f(-n)). 
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When r = s = 1, we have similarly 

9 (n) = 2 (f(n) + f(- I - n)), h (n) =2(f(n) - f(- I - n)) 

When r = 1 and s = 0, it is easy to deduce that h(0) = 0, g(O) =f(O) 
h(1) = f(0)-f(-l), g(1) =f(l)-f(O)+f(-l), h(2) = f(l)-f(O)+f(-l)- 
f(-2), g(2) = f(2) - f(l) + f(O) - f(-l) + f(-2), etc. 

And when r = 0 and s = 1, the general solution is g(0) = f(0) - C, 
h(O) = C, g(l) = f(-l) + C, h(l) = f(l) - f(-l) - C, g(2) = f(l) - 
f(- 1 ) + f(-2) - C, h(2) = f(2) - f(l1) + f (- 1 ) - f(-2) + C, etc. E] 

When f(n) = Ek>Oak (n+Lkl2j) the case r = 1 and s = 0 corresponds to 
the decomposition 

g(n)=,a2k= 
2k ) h(n)=Za2k+ I2k+lJI k=O ~~~~~~k=0 

Similarly, the representation f(n) = Zk>O b2k Tk (n) + Zk>O b2k+? Uk+1 (n) cor- 
responds to the case r = 0, s = 1, C = f(0) . 

7. BACK TO FAULHABER'S FORM 

Let us now return to representations of Xnm as polynomials in n(n + 1). 
Setting u = 2N = n2 + n, we have 

En - uA(l)u 

In3 = 1 u2 42) = (A(U + +2 

IO5 = (u3 - ) = +U3 (3)U2 + (3) 

In t 2-t (4) U4 A(4) U3 A(4)U 2+A4 A n 8U - u + (AJ 8 +Al + A2 u 3u, 

and so on, for certain coefficients A(m). k 
Faulhaber never discovered the Bernoulli numbers; i.e., he never realized 

that a single sequence of constants Bo, B1, B2, ... would provide a uniform 
formula 

nm=I (Bonm+l - (m+l)Blnm + (m+l)B2nm- I + (-1)m (mj)Bmn) 

for all sums of powers. He never mentioned, for example, the fact that almost 
half of the coefficients turned out to be zero after he had converted his formulas 
for Xnm from polynomials in N to polynomials in n. (He did notice that the 
coefficient of n was zero when m > 1 was odd.) 

However, we know now that Bernoulli numbers exist, and we know that B3 = 
B5 = B7 = ... = 0. This is a strong condition. Indeed, it completely defines the 
constants A(m) in the Faulhaber polynomials above, given that A(m) = 1. k 

For example, let us consider the case m = 4, i.e., the formula for Xn7: We 
need to find coefficients a = A4, b =A2 c = A34) such that the polynomial 

n4(n + 1)4 + an3(n + 1)3 + bn2(n + 1)2 + cn(n + 1) 
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has vanishing coefficients of n5, n3, and n. The polynomial is 

n8 +4n7+6n6+4n5 +n4 

+ an6 + 3an5 + 3an4 + an3 

+ bn4 + 2bn3 + n2 

+ cn2 + cn; 

so we must have 3a + 4 = 2b + a = c = 0. In general the coefficient of, say, 
n2m-5 in the polynomial for 2mXn2m -I is easily seen to be 

(m)A(m) + (m) )A(m) + (m-2)A(m) 

Thus, the Faulhaber coefficients can be defined by the rules 

(*) ~A(w) =Il Yiw(Aw) = 0 k >0. ( ) o ; E (2k + I - 2j)J 

(The upper parameter will often be called w instead of m, in the sequel, 
because we will want to generalize to noninteger values.) Notice that ( * ) defines 
the coefficients for each exponent without reference to other exponents; for 
every integer k > 0, the quantity A(w) is a certain rational function of w . For 
example, we have 

-A(w) = w(w-2)/6, 

A2w) = w(w - l)(w - 3)(7w - 8)/360 , 
- A(w) = w(w - 1)(w - 2)(w - 4)(3 1W2 - 89w + 48)/15120, 3 

A(w) = w(w - l)(w - 2)(w - 3)(w - 5) 

*(127w3 - 691W2 + 1038w - 384)/6048000, 

and in general A(w) is Wk = w(w - 1) (w - k + 1) times a polynomial of 
degree k, with leading coefficient equal to (2 - 22k)B2k/(2k)! ; if k > 0, that 
polynomial vanishes when w = k + 1. 

Jacobi mentioned these coefficients A(m) in his paper [6], and tabulated them k 
for m < 6, although he did not consider the recurrence (*). He observed that 
the derivative of Inm with respect to n is m Inm- I + Bm; this follows because 
power sums can be expressed in terms of Bernoulli polynomials, 

Xnm = ImI (Bm+Il(n + 1) - Bm+I(0)) 

and because B,'(x) = mBmi (x). Thus Jacobi obtained a new proof of Faul- 
haber's formulas for even exponents: 

In2 = 1 (2A (2)U + I A(2)) (2n + 1) 
4n = 0 1), 

IO4 = 1(3A A(3) u2 + A A(3) u + I A(3) ) (2n + 1 ) , 

n6 = 7(4A (4) U3 + 3A (4)U2 + 2A (4) + -A (4) )(2n + I) 

etc. (The constant terms are zero, but they are shown explicitly here so that the 
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pattern is plain.) Differentiating again gives, e.g., 

En - 6.7.8 ((4 . 3 A(4)u2 + 3 . 2 A(4)u + 2. 1 A(4))(2n + 1)2 

+ 2(4A(4 u3 + 3A(4)u2 + 2A(4)u + lA(4)) -B6 

- 6.7.8 (8 *7A (4)u3 + (6. 5A (4) + 4 . 3 A(4))U2 

+ (4. 3A(4) + 3 * 2A(4))u + (2 1 (4) + 2. 4 1 A))) - B6 

This yields Jacobi's recurrence 

(**) (2w-2k)(2w-2k-1)A(w)+(w-k+l)(w-k)A(w) = 2w(2w-1)A( w) 

which is valid for all integers w > k + 1, so it must be valid for all w . Our 
derivation of (**) also allows us to conclude that 

A(m) =(2r)B2m2 > Am-2 =(2 )2m-2 1 m>2 

by considering the constant term of the second derivative of In2m- . 
Recurrence (*) does not define A m), except as the limit of A w) when 

w - m. But we can compute this value by setting w = m + 1 and k = m 
in (**), which reduces to 

2A(m+-) = (2m + 2)(2m + I)A(m) 

because A7m+') = 0. Thus, 

A(m) = B2m, integer m > O . 

8. SOLUTION TO THE RECURRENCE 

An explicit formula for A(m) can be found as follows: We have k 

In2ml = 2 (B2m(n+ 1)-B2m) = 2 (A(m)Um+ +A(m) u), 

and n + 1 = ( 1+ 4u+ 1)/2; hence, using the known values of Am, we obtain 

ZA (m)Um-k B2 -l+ 4U + l)B(- 1 
l 

+4u) 
k=O() () 

a closed form in terms of Bernoulli polynomials. (We have used the fact that 
A(m) =A(m) = =0, togetherwith the identity B(x+1) = (-1)nBn(-x).) M+1 -m+2 =nX+n(X 
Expanding the right side in powers of u gives 

( I )( 2 )B2m-1 

(22) (27 + 1) 1 l(-u)+'B2m-1 
j, I 

1 i 2 

using equation (5.70) of [5]. Setting j + I = m - k finally yields 

k l +)Z(Bm+k+j( O < k <Bm. A(m) - ~.\m - k- j/Jm-k+j i<<m 
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This formula, which was first obtained by Gessel and Viennot [4], makes it easy 
to confirm that A(m) -0 and A(m)2 = (2m)B2m2, and to derive additional 
values such as 

Am) =-2 2 B2m-2 -2A(m)2 m > 3 

A(m)4= (2m)B2m4 + 5( 2j)B2m2, m > 4. 

The author's interest in Faulhaber polynomials was inspired by the work of 
Edwards [1], who resurrected Faulhaber's work after it had been long forgotten 
and undervalued by historians of mathematics. Ira Gessel responded to the 
same stimulus by submitting problem E3204 to the Math Monthly [3] regarding 
a bivariate generating function for Faulhaber's coefficients. Such a function is 
obtainable from the univariate generating function above, using the standard 
generating function for Bernoulli polynomials: Since 

{x+ 10 z2m 1 {x+ 10zm 1 {+ 10(-z)M 
EB2mt J ) = 2 E Bm V !+ 2 E Bm V2 m 

z e(x+l)z/2 z e-(x+ )zl2 z cosh (xz/2) 
2(ez 1) 2(e-z - 1) 2 sinh (z/2) 

we have 

EA(m) u - =E B2m() Lsk 2m 2 ) (2m)! 
k, m / 

z cosh ( ?4uz/2) 
2 sinh (z/2) 

A Zm)uk z - z ?cosh ( u? z/2) 

k, m (m). 2 sinh (z u/ 2) 

The numbers A(m) are obtainable by inverting a lower triangular matrix, as k 
Edwards showed; indeed, recurrence (*) defines such a matrix. Gessel and 
Viennot [4] observed that we can therefore express them in terms of a k x k 
determinant, 

w-k+1) (w-k+1) 0 ... 0 

(w-k+2) (w-k+2) (w-k+2) 0 

A(W) 1 
k (1-w)... (k-w) 

w2k-1 
) 

O... (2wk-13) ....(2Wk-5) ... 1 

(2kw1) (2k -1) (2k-3) ... (W3) 

When w and k are positive integers, Gessel and Viennot proved that this 
determinant is the number of sequences of positive integers a Ia2a3 * a3k such 
that 

a3j-2 < a3j1I < a3j < w - k + j for I < j < k 

a3j-2 < a3j+l, a3j11 < a3j+3 for I < j < k. 
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In other words, it is the number of ways to put positive integers into a k-rowed 
triple staircase such as 

with all rows and all columns strictly increasing from left to right and from top 
to bottom, and with all entries in row j at most w - k + j. This provides 
a surprising combinatorial interpretation of the Bernoulli number B2m when 
w = m + 1 and k = m - 1 (in which case the top row of the staircase is forced 
to contain 1, 2, 3 ). 

The combinatorial interpretation proves in particular that (-1 )kA(m) > 0 for 
all k > 0. Faulhaber stated this, but he may not have known how to prove it. 

Denoting the determinant by D(w, k), Jacobi's recurrence (**) implies that 
we have 

(w - k)2(w - k + 1)(w - k - I)D(w, k - 1) 
= (2w - 2k)(2w - 2k - 1)(w - k - I)D(w, k) 

- 2w(2w - 1)(w - I)D(w - 1, k); 

this can also be written in a slightly tidier form, using a special case of the 
"integer basis" polynomials discussed above: 

D(w, k - 1) = T (w- k - I)D(w, k) - T&(w - I)D(w - 1, k). 

It does not appear obvious that the determinant satisfies such a recurrence, nor 
that the solution to the recurrence should have integer values when w and k 
are integers. But, identities are not always obvious. 

9. GENERALIZATION TO NONINTEGER POWERS 

Recurrence (* ) does not require w to be a positive integer, and we can in 
fact solve it in closed form when w = 3/2: 

A (3/2)U3/2-k =B ( 1+ 4u1) 
k>O 

= U 1 ?4u = U3/2E (1k) (4u) -k 

k>O 

Therefore, Ak312) = (1/2)4-k is related to the kth Catalan number. A similar 
closed form exists for A(m+l/2) when m is any nonnegative integer. k 

For other cases of w, our generating function for A4w) involves Bn (x) with 
noninteger subscripts. The Bernoulli polynomials can be generalized to a family 
of functions B, (x), for arbitrary z, in several ways; the best generalization for 
our present purposes seems to arise when we define 

Bz(x) = x Z (E)x Bk, 
k>O 
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choosing a suitable branch of the function xz. With this definition we can 
develop the right-hand side of 

z Aku = B2W ( +4 
I 

+ w 
k>O 

( +u+1I '\- (2w) ( 1+ 4u + I 
( 20i ) k>0 k )Bk 

as a power series in u- as u - oco. 
The factor outside the E sign is rather nice; we have 

/ ~~~2w 
_ _ _ ww w+ j/2'\1/2 
V 1+ 4u =Iw+j/2 j J 2 J 1- >0 w+/ 

because the generalized binomial series B1/2(u-1/2) [5, equation (5.58)] is the 
solution to 

f(u) 1/2 _ f(U)- 1/2 = U- 1/2 f(oo) = 1 
namely 

1?I ~4u +1 
f(u) 2 2 + / 

Similarly we find 

( 1+ 4u + 1 ) k -k (j/2 - k/2) 

- Uk/2 
k 

E (j/2 
- 

k/2 - 1) k12_J/2 

j1? 

So we can indeed expand the right-hand side as a power series with coefficients 
that are polynomials in w. It is actually a power series in U-1/2, not u-1 
but since the coefficients of odd powers of u112 vanish when w is a positive 
integer, they must be identically zero. Sure enough, a check with computer 
algebra on formal power series yields l+A(w)u-I +A(u')u-2+A (7)u-3+O(u-4), 

where the values of A(w) for k < 3 agree perfectly with those obtained directly k 
from (*). Therefore this approach allows us to express A(') as a polynomial k 
in w, using ordinary Bernoulli number coefficients: 

2k ( w +l1/2\ A(w) = Zx?/2K / k E w7 + 1/2 ( 
1=0 

The 
( 

(( 2k1)B2 
2 (2 ) - j (2k--j- 

The power series (***) we have used in this successful derivation is actually 
divergent for all u unless 2w is a nonnegative integer, because Bk grows 
superexponentially while the factor 

/2w 1)k k-2w- (Il)kF(k-2w) (1))k - 
k k jk / F(k?+ l)F(-2w) F(-2w) 
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does not decrease very rapidly as k - oo . Still, ( *** ) is easily seen to be 
a valid asymptotic series as u - oo0, because asymptotic series multiply like 
formal power series. This means that, for any positive integer p, we have 

WE ~(2w) ( 2 1 ) 
Bk ZA(w) U-k + O(Uw-p-l). 

We can now apply these results to obtain sums of noninteger powers, as 
asymptotic series of Faulhaber's type. Suppose, for example, that we are inter- 
ested in the sum 

H( 1/3) _ _1 

k=_ 
Euler's summation formula [5, Exercise 9.27] tells us that 

H(-1/3) _ C( ) '3 2/3 + 2n- 1/3 _1 n-4/3 

3 3( (2/3 )n2/3-kBk+n -1/3) 

k>O 

where the parenthesized quantity is what we have called B213(n + 1) . And when 
u = n2?+ n, we have B213(n + 1) = B213(( l + 1)/2); hence, 

H(113)_ -C() { 2EA( 13)U13-k 

k>O 

=32u1/3 + 5 U-2/3 _ 17 U-5/3 + 

as n - oo0. (We cannot claim that this series converges twice as fast as the 
classical series in n- , because both series diverge! But we would get twice as 
much precision in a fixed number of terms, by comparison with the classical 
series, except for the fact that half of the Bernoulli numbers are zero.) 

In general, the same argument establishes the asymptotic series 

S - C(-a) a 11 S (a+l)12) u(a+l)/2-k 

k=1 k>O 

whenever a : -1. The series on the right is finite when a is a positive 
odd integer; it is convergent (for sufficiently large n ) if and only if a is a 
nonnegative integer. 

The special case a = -2 has historic interest, so it deserves a special look: 

E 1 
2 

_ (-l12) U-1/2 _ 1(/2) U-3/2_ k T2 6 o A112 -i 
k=1 

_2 _ -1/2 5 - 161 +401 u- 12+ -U- 1920 u5/2+ 401 / 
6 24 1907168 

32021 u9/2 
491520 u 

These coefficients do not seem to have a simple closed form; the prime factor- 
ization 32021 = 11 41 . 71 is no doubt just a quirky coincidence. 
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